高中数学直线的方程教案

时间:2023-04-06 05:31:35
高中数学直线的方程教案

高中数学直线的方程教案

作为一名教学工作者,有必要进行细致的教案准备工作,教案是教学活动的依据,有着重要的地位。那么应当如何写教案呢?下面是小编整理的高中数学直线的方程教案,仅供参考,欢迎大家阅读。

高中数学直线的方程教案1

教学目标:

(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.

(2)理解直线与二元一次方程的关系及其证明

(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.

教学重点、难点:直线方程的一般式.直线与二元一次方程 ( 、 不同时为0)的对应关系及其证明.

教学用具:计算机

教学方法:启发引导法,讨论法

教学过程:

下面给出教学实施过程设计的简要思路:

教学设计思路:

(一)引入的设计

前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

问:说出过点 (2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?

答:直线方程是 ,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

问:求出过点 , 的直线的方程,并观察方程属于哪一类,为什么?

答:直线方程是 (或其它形式),也属于二元一次方程, ……此处隐藏5295个字……参数方程

(为参数)

【辨析直线的参数方程】:设M(x,y)为直线上的任意一点,参数t的几何意义是指从点P到点M的位移,可以用有向线段数量来表示。带符号.

(2)、经过两个定点Q,P(其中)的直线的参数方程为

。其中点M(X,Y)为直线上的任意一点。这里参数的几何意义与参数方程(1)中的t显然不同,它所反映的是动点M分有向线段的数量比。当时,M为内分点;当且时,M为外分点;当时,点M与Q重合。

(三)、直线的参数方程应用,强化理解。

1、例题:

学生练习,教师准对问题讲评。反思归纳:1、求直线参数方程的方法;2、利用直线参数方程求交点。

2、巩固导练:

补充:1、直线与圆相切,那么直线的倾斜角为(A)

A.或 B.或 C.或 D.或

2、(坐标系与参数方程选做题)若直线与直线(为参数)垂直,则 .

解:直线化为普通方程是,

该直线的斜率为,

直线(为参数)化为普通方程是,

该直线的斜率为,

则由两直线垂直的充要条件,得, 。

(四)、小结:(1)直线参数方程求法;(2)直线参数方程的特点;(3)根据已知条件和图形的几何性质,注意参数的意义。

(五)、作业:

补充:设直线的参数方程为(t为参数),直线的方程为y=3x+4则与的距离为_______

【考点定位】本小题考查参数方程化为普通方程、两条平行线间的距离,基础题。

解析:由题直线的普通方程为,故它与与的距离为。

五、教学反思:

《高中数学直线的方程教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式